A histopathological image classification method for cholangiocarcinoma based on spatial-channel feature fusion convolution neural network
نویسندگان
چکیده
Histopathological image analysis plays an important role in the diagnosis and treatment of cholangiocarcinoma. This time-consuming complex process is currently performed manually by pathologists. To reduce burden on pathologists, this paper proposes a histopathological classification method for cholangiocarcinoma based spatial-channel feature fusion convolutional neural networks. Specifically, proposed model consists spatial branch channel branch. In branch, residual structural blocks are used to extract deep features. multi-scale extraction module some multi-level modules designed features order increase representational ability model. The experimental results Multidimensional Choledoch Database show that performs better than other classical CNN methods.
منابع مشابه
Multiscale High-Level Feature Fusion for Histopathological Image Classification
Histopathological image classification is one of the most important steps for disease diagnosis. We proposed a method for multiclass histopathological image classification based on deep convolutional neural network referred to as coding network. It can gain better representation for the histopathological image than only using coding network. The main process is that training a deep convolutiona...
متن کاملImage Feature Classification Based on Particle Swarm Optimization Neural Network
Image feature classification is one of the basic questions of image processing and computer vision and it is also a key step of image analysis. BP neural network has been extensively applied in feature classification and it can classify specific objects or features through early learning; however, BP algorithm also has many defects, including slow convergence speed and easiness to be trapped in...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملA conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Oncology
سال: 2023
ISSN: ['2234-943X']
DOI: https://doi.org/10.3389/fonc.2023.1237816